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A Lagrangian scheme is presented for the two-dimensional simulation of pollutant
transport in a porous medium. The anisotropic extension of the particle strength
exchange method is implemented to describe the diffusive—dispersive process. By
applying the scheme to a benchmark problem with an analytical solution, the method
is shown to be accurate and stable even in the limiting cases of vanishing diffusion—
dispersion coefficients and high anisotropy ratios. The scheme is shown to perform
well with spatially variable velocity fields also. © 2001 Academic Press
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1. INTRODUCTION

This article is concerned with the numerical simulation of pollutant transport in groun
water using a Lagrangian scheme, based on a particle method. The grid-free charact
the particle methods and the straightforward physical interpretation of their results m
them an interesting alternative to established methods such as finite differences or f
elements. Drawbacks such as computational cost and difficulties in dealing with diffus
effects have been overcome by the development of fast summation algorithms [9] and re
developments in new numerical methods for the accurate treatment of diffusive effects
the past, diffusion was generally added to Lagrangian particle methods using the ran
walk method introduced by Chorin [2] in 1973. This method is stable and easy to imp
ment but has the disadvantage of a relatively low convergence rate. In the 80’s, an altern:
scheme, the particle strength exchange method (PSE), was introduced by Mas-Gallic
and coworkers (Cottet [3], Huberson [10], Raviart [19]). This method accounts for diffusi
effects by approximating the differential diffusion operator by an integral operator whi
when discretized, using as quadrature points the locations of the particles, amounts
redistribution of the particle strengths. Practical implementations of the theory of parti
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strength exchange (for examples see Winckelmans [22], Winckelmans and Leonard |
Koumoutsakos and Leonard [15]) deal with a scalar isotropic diffusion parameter as
scribed in Degond and Mas-Galllic [7]. In a second step, Degond and Mas-Gallic exten
their theory to the case of an anisotropic (matrix) diffusion parameter [8]. However, \
are not aware of any practical implementations or numerical studies using this anisotrc
extension of the PSE theory.

The macroscopic transport of a nonreactive solute in a porous medium can be desct
by three main transport processes: the advective motion with the mean velocity field of
flow, the molecular diffusion, and the dispersion of the pollutant. Molecular diffusion
only important at a microscopic scale and is generally incorporated in the dispersive n
flux. Both diffusion and dispersion may be described in a first approximation by Fick's la
The dispersive flux is due to subscale variations in velocity caused by the varying thickn
of pores, the bending of streamlines around the grains, the variation of the velocity prof
within the pores, and the inhomogeneities of the aquifer. Dispersion is always anisotrc
even in the case of an isotropic medium and at least one order of magnitude large
flow direction than orthogonal to the flow direction. Dispersion has to be described b
tensor of second rank. Depending on the proportions of the advective and the disper
flux—characterized by the Peclet numiia= B—‘L‘, with L some characteristic length of
the transport phenomenon, u the mean velocity, Bpdthe dispersion coefficient—the
transport equation shows a more hyperbolic (high Peclet number) or a more parabolic (
Peclet number) character.

Firstimplementations of a numerical solution to the advection—dispersion transport ec
tion were realized with finite difference (FD) and finite element (FE) methods. For a revi
of analytical and numerical transport modelling in groundwater see Kinzelbach [13]. T
discretization restrictions and difficulties associated with the hyperbolic aspect of the tre
port equation, as well as the problems of numerical dispersion and numerical oscillati
associated with FD and FE schemes, gave rise to the development of the method of «
acteristics (MOC) [1] and random walk schemes [12, 21].

These particle-based methods avoid many of the problems arising in FD and FE meth
The grid anisotropy problems that FD and FE methods experience in the case wher
mean flow direction is not aligned with a grid direction do not show up with particle
based methods. The limiting case of disappearing dispersivities (high Peclet number flc
and the case of scale-dependent dispersivities can only be treated well by random \
methods. However, there are shortcomings with the method of characteristics and the rar
walk as well. The method of characteristics has problems in dealing with high anisotrc
ratios (when the longitudinal dispersivity is two or more orders of magnitude larger th
the transversal dispersivity). In its implementation using particles, it also suffers frc
synchronization effects of the tracer particle movement which may lead to nonphysi
oscillations. The random walk method, on the other hand, gives a very rough picture of
concentration distribution due to the stochastic nature of the dispersive step.

The PSE method with the anisotropic extension of Degond and Mas-Gallic [8] shares
advantages of the random walk method without having the disadvantage of the stochas
oscillations, as the integral operator replacing the differential diffusion—dispersion operz
results in a higher accuracy for the discretization. In contrast to the method of characteris
particles are only needed in locations where there is solute. Since the PSE method a\
artificial mixing of the concentrations while preserving the local gradients, sharp fronts ¢
high anisotropy ratios can be well simulated. This is especially important in groundwa
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applications where concentration fronts stay relatively sharp and in natural heterogene
media where a smooth concentration distribution is only reached in the long time limit.

In the present work the numerical scheme originally developed for viscous fluid flc
carrying vorticity [14] is used as a basis for the 2D simulation of passive pollutant trar
port in groundwater. We presume an externally given (mean) velocity field and treat
advection—dispersion transport equation by means of a particle method with the anisotr
PSE approach describing the diffusive—dispersive process. A validation study, varying
numerical parameters, is conducted to assess the accuracy of the method. The mett
applied to a benchmark problem and compared with the analytical solution. As showr
this paper, the PSE scheme is a very accurate and stable method even in the cases o
anisotropy ratios and vanishing dispersivities. In simulations with a more complex flc
topology we show that the method is well capable of handling spatially variable diffusio
dispersion tensors.

The paper is organized as follows: In Section 2 the governing equations and the nume
method are summarized. In Secti®a \alidation study is presented. Simulations conductec
with a spatially nonconstant velocity field are presented in Section 4. In Section 5
summarize the present work and discuss its advantages and drawbacks.

2. THE GOVERNING EQUATIONS

2.1. The Advection—Dispersion Equation

Nonreactive solute transport in a porous medium can be described by the advecti
dispersion equation,

ac(x, t)
at

+ VUK 1) - CX 1) — o (X, t) = V(DX, t) - VC(X, 1)), 1)

whereu is a given mean velocity field, stands for the tracer concentratienis a term for
internal sources and sinks, abd a symmetric tensor of second rank, contains diffusior
and dispersion.

The numerical method presented here is based on the discretization of the above equ
in a Lagrangian frame using a particle method. The advection—dispersion equation (Eq.
may thus be transformed into the set of equations

dx
Fri u(x, t) (2)
dcg(t’ Y _ v 1) Ve, 1) + o x. 1), 3)

with u(x,t) a given external mean velocity field which moves the particles along the
characteristics.

2.2. Particle Strength Exchange (PSE)

The particle strength exchange method (PSE) was introduced by Mas-Gallic [17] ¢
coworkers (Cottet [3], Huberson [10], Raviart [19]). This method accounts for diffusiv
effects by appropriately modifying the strength of the particles. It is based on the apprc
mation of the diffusion operator of the advection—diffusion transport equation by an integ
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operator and the application of a quadrature rule to this integral using as quadrature p«
the locations of the particles. Each particle is characterized by a regularization function
order to maintain stability and accuracy, the particles’ regularization functions must ov
lap at all times [14]. Therefore the particle field must be occasionally remeshed onto a
structured field depending on the map of the flow field. As Koumoutsakos [14] showed,
accuracy of the PSE method is more than two orders of magnitude superior to the ran
walk method. For a special kernel and in case the particles occupy regular positions or
grid, Cottet [4] showed that the method is equivalent to a second order finite-differer
approximation. For the reader’s convenience we summarize the important steps of the
method for both the isotropic and the anisotropic case. For further details see [7] and [

2.2.1. The Isotropic Case

In the first part of their paper [7], Degond and Mas-Gallic proposed a new partic
approximation for the isotropic diffusion part of the general advection—diffusion equatic
Note that the diffusion part of the advection—diffusion equation corresponds to the disper
part of the advection—dispersion equation (Eg. (1)). In the isotropic case the diffusion ma
D can be replaced by a scalar functiofx). If the kernelo® satisfies certain moment
conditions, Taylor’s formula shows [7] that the integral operator is an approximation of t
differential diffusion operator:

V(Ve) =~ vQf(t)e(x, t) = v /“ ) a®(x,y, t[c(y) — c(x)] dy. 4)

In particle methods the concentration field may be expressed as a discrete sum of
concentrations of each particle having core radiusoncentratiorc(t), and an individual
concentration distribution (a regularization function) determined by the functiea that

N
cx, ) =) G5 —x (1), ()
i=1

whereN is the number of particles employed in the discretization,»attd is the position
of thei-th particle at timet. The discretized particle approximatidg, is obtained by
applying a quadrature rule to the integral operd@s(t) using the particles as quadrature
points,

Q) = Y o (xe(t), xi (1), Dlai (1) — c(®)] - h?, (6)
|

whereh is the representative interparticle spacing ahgy, x| ) is a regularization (smooth-
ing) function which is defined by

&

e 1 1 X
o (X, X)) = ?ng(xk—xo, ﬂs(X)=;n<—)~ )

If the functionn(x) obeys the moment conditions
/xix,-n(x) dx =25; fori,j=1,2

/xifxi;n(x)dx=0 ifi,+io=10r3<ip+io<r+1 iyioeNog, (8)
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then Taylor’s formula shows [7] that the integral operator is an approximation of the diffusi
operator to the order.

Qc=V@wVe)+0@E"), r=>2. 9)

The discretization of the integral opera@f by the numerical quadrature rule introduces
an additional error of)(h¥/¢*+1) whereh is a representative interparticle spacing &nsl
dependent on the properties of the smoothing functiomhe method has been shown to
be stable [7] for positive second order regularization functions. The method is also ste
for all higher order regularization functions provided there is a positive conStastich
that

v < Coe?. (10)

The total error induced by the approximation of the diffusion operator and the partic
discretization is of orde®©(¢" + SL‘%). Finally, the discretized form of Eg. (3) may be
expressed as

dg, vh? N
Py > (@ — G (% — X) + 0 (X, ). (11)
=1

2.2.2. The Anisotropic Case

In [8], Degond and Mas-Gallic extended their earlier approximation of the diffusio
operator by an integral operator from the isotropic to the anisotropic case. Together v
more severe restrictions on the regularization function within the integral operator tr
find the need to use different regularization functions for each component of the dispers
tensor due to the appearance of the mixed derivative terms.

In general form, the dispersion tensor in 2D may be written as

D D
D= XX Xy ’ (12)
DyX Dyy

where, according to Scheidegger [18],

2 2
u u
Dyx = oL = + OlT_y
[ul [ul
Uy - Uy
ny = Dyx = (L —aT) u|
(13)
u2 ug
Dy = ar—= +a —
yy T L
[ul [ul

— /y2 2
ul = ug + uy.

a andat are the longitudinal and transversal dispersivities, respectively. Usyai§one
order of magnitude larger tharny. In the most general form, the 2D dispersion equatior
can be written as

2

de(x,t) 0 ) ac(x, t)
dt i%a—xi([’”“”' ) o

J



SIMULATION OF POLLUTANT TRANSPORT 327

The anisotropic dispersion operaté(DVc(x, t)) is approximated by an integral operator
of the form

VDV, 1) ~ QS (e, t) = / o (%, Y. DIC(Y) — c(0] dy. (15)

N2

The discretized form then reads

6ﬁ(t)ck(t) = ZUS(Xk(t)» x (1), [a () — c(t)] - h?, (16)
I
with

12
ot (X, X, 1) = =2 Z Mij (X, X1, DY (X — Xi) (17)

and

. 1 X
Vi (X) = ?wij (g)

where | is a matrix cut-off (smoothing) function anilij (x,y,t) is a function of the
dispersion tensdp;; . In their article Degond and Mas-Gallic [8] propose several methoc
and examples for practical numerical schemes. Choosing the matrix cut-off function in
form of

2
y')- D X =i =y, (18)

ij=1

1—/IX
vij(x.y) = 26 (

we obtain the following discretized form of Eq. (14):

2
_q< =26 Z(CI —Ck)®<|Xk XI') . Z Mij Xi, X)) (X — X1)i (X — X1)j - (19)

ij=1

In our numerical simulations we used the following normalized second (Eq. (20)), fou
(Eg. (21)), and 6th (Eg. (22)) order cut-off functions:

— Xk — X | 1 _ow?
®< & ) - Zne * (20)
— |Xk—X|| 1 _oew? (X|(—X|)2
— (X — X 1 oo Xk — X)? X —x)?\
@< - ):Ee [20 10 > +( 522 : (22)

Degond and Mas-Gallic [8] suggdét(xk, X, t) to be in the form of

1
M (Xk, X|) = E(m(xk) +m(x)), (23)
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where
1
m=D-— 21Tr(D) .. (24)

Tr stands for the trace of the matrix, alnfbr the identity matrix. With our dispersion matrix
Dxx ny
Dyx Dyy )

1

13Dy — Dyy) D

mi;=<4 T ) (25)
Dyx 1(3Dyy — Dxx)

we get

2.3. Lagrangian Distortion—Remeshing

In order to model diffusion—dispersion properly according to the PSE method, the re
ularization functions of the particles should overlap at all times. Where particles cease
overlap, an exchange of concentration strength is no longer possible. Particle accumula
on the other hand, leads to numerical instabilities related to the explicit time discretizat
of the diffusion term [5]. So when the flow field topology leads to clustering or spreadir
of the particles, a reinitialization of the particle locations onto a new (uniform) grid has
be undertaken. The old concentration fiet)l &nd the distorted particle locations) @re
interpolated to the new grid (particle) locatior’§ &nd the new concentration field) (by
means of an appropriate fourth order interpolation keMgu), u = % whereh is the
spacing of the new grid, according to

M ~
ey ’ IXi — X;j]
Ci(Xi)%ZCj(Xj)~M4<%), (26)
=1
with
2 3 .
120 3 if0<u<l,
My =4 22-w?1-uw fl<u=<2 @7)
0 ifu> 2

Note that the process is not of the usual interpolation type, as itis complicated by the fact
the old particle locations are disordered. For a more detailed review of interpolation meth
see Cottetand Koumoutsakos [6]. The remeshing procedure introduces numerical errors
the scheme. However, when we implement interpolation kernels that conserve the ang
impulse, the remeshing does not introduce a second order diffusive error. Moreover, in |
itis shown thatthe error introduced by the remeshing is in general smaller than the numel
dissipation error introduced by the time integration (using a second order Adams—Bashf
scheme) of the system of Egs. (2) and (3). The minimal necessary remeshing frequen
governed by the topology of the flow field considered in the simulation. For most practic
simulations remeshing is usually not necessary at each time step. In our simulations we
a remeshing period of one or two time steps (see also Table Il). It should be emphas
that for uniform velocity fields there is absolutely no need for remeshing.
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3. VALIDATION STUDIES

In this section we examine the implementation of the anisotropic dispersion case
scribed in Section 2.2.2. We consider an unbounded domain with a given constant velc
field. A momentary pollutant source with a Gaussian distribution is injected into the c
main. For all simulations a second order Runge—Kutta scheme has been used to adve
particle locations. For this simple case, the transport equation can be solved analytic
The analytical solution for the concentration of an instantaneous Gaussian input ma
expressed as

AM
cX,y,t) = - exp(A), (28)
Zﬂmne\/‘ltz(Dxnyy - D)%y) + Sgrc + 2";grct(DXX + Dyy)
where
A= _Xt2<2t Dyy + 8§rc) B yt2(2t Dxx + sgrc) + Xtyt4t DXY
8tZ(Dxnyy - D)%y) + 2Sgrc + 4‘9§rct(DXX + Dyy)
with
Xt = X — Uyt
Ve =Y — Uyt,

where AM denotes the input of pollutant mass at time@ (momentary injection)n is
the thickness of the saturated flaw, is the effective porosity, ang;. is the width of the
Gaussian input. We compare the numerical solutidiiswith the exact solutiort®* by
plotting the error either (1),

> (¢~ Cinu)z

error=
M

0

summing over the particle locations(i = 1, ... .. , M), where M is the number of points
with ¢ > 10-% mgl/l, or (1) the relative error at poink;:

)e:x_ )r:u
rel. error= —=-. (Il
o an

We structure our approach as follows: First we examine the convergence behaviour
varying time step size, core size, and various forms of the dispersion t@risasimula-
tions up to 200 days. Then we show comparisons of the numerical and analytical res
with contour plots and breakthrough curves for different anisotropy ratios and remesh
frequencies in simulations up to 1000 days. For comparison purposes one test case (c:
is also calculated with a finite difference code (MT3DMS). Finally the influence of th
order of the cutoff functior® (Egs. (20)—(22)) is examined for different anisotropy ratios

3.1. The Influence of the Core Size and the Time Step Size

Five test cases were chosen with the parameters shown in Table I. The test case
distinguished by the flow direction—and thus by the form of the dispersion tensor—as v
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TABLE |
Parameters Used for the Convergence Study

Uy uy o ar Form ofD Flow direction to Min
Case [m/d] [m/d] [m] [m] [n#/d] the x-axis (degree) [s]]
1 1 0 10 1 ( a 0) 0 125,000
0 b '
2 2 -2 10 1 (a b) 45 125,000
b a
3 1 0 100 10 ( g 8) 0 125,000
4 V2 -iy2 100 10 (a b) 45 125,000
b a
a c
5 0.6 -038 10 1 ( c b) 53 125,000

as by the dispersivity values. The anisotropy ratio here is in each test case equal to 1
For all test cases, an overlap rat'@)) (of 0.9 was selected. Remeshing every one or twc
time steps when necessary and appropriately selecting the time step for the integratic
the particle trajectories ensures that on average this ratio is observed in our simulation

3.1.1. The Influence of the Core Sizg (

The error of the approximation of the diffusion—dispersion operator by a smooth integ
operator is associated with the core size of the regularization function of the particles. Si
the overlap ratio is kept constant, the variation of the core size is also connected to
interparticle spacing and thus to the number of particles. The influence of the core siz
evaluated by examining cases 1, 2, and 5 (with a second order cutoff function) which
distinguished by the form of the dispersion tenBokn this way the influence of the various
forms of the dispersion tensor can be examined too.

Diminishing the core size and thus the interparticle spacing means obtaining a hig
resolution simulation. The errors of all test cases can be consistently reduced by reducin
core radius of the particles (Fig. 1). The method produces the same behaviour irrespe:
of the character of the dispersion matrix. The reason is that our method does not u:
structured grid such as in finite differences and therefore shows no grid anisotropy.

3.1.2. The Influence of the Time Step Size

In order to assess the effect of the time step we examine cases 1, 3, and 4 by varyin
size of the time step and the order of the cutoff function. Figure 2 shows that the result:
case 1 are stable for a time step which can be about 10 times higher than for cases 3 a

The restriction found on the time step size with test case 4 is

2

&
At<C——m,
Dxx + Dyy

wheree is the core size of the regularization function of the particles @rd2.5 for a
second order cutoff function (Eq. (20); Fig. 2b)x 1.2 for a fourth order cutoff function
(Eg. (21); Fig. 3), and ~ 0.7 for a sixth order cutoff function (Eq. (22); Fig. 3), similar to
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error

Il 1 1 1 1
0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
1/e

FIG. 1. Error (1) of the numerical solution in comparison with the analytical solution with varying core size
case 1 (dashed line, squares), case 2 (solid line), case 5 (circles).

but slightly weaker than the Neumann condition for explicit finite difference methods:

AX?

At <05—m.
DXX + Dyy

(29)

The restrictions on the time step size become more pronounced using a higher order ¢
function (Fig. 3). Further tests with various anisotropy ratios showed the same time s
restrictions. Although subject to a severe time step size constraint, the use of an exf
time stepping procedure does facilitate the parallelization of the method.

Degond and Mas-Gallic, in their original papers [7, 8], conducted a rigorous stabil
analysis of the proposed method. A stability analysis here is further complicated by
remeshing which periodically maps the particles onto a regular grid. It has been showr
Cottet [4] that the PSE is equivalent to a finite difference method when the particles occ
regular grid nodes. When remeshing is implemented this analysis is pertinent. The re:
presented in this work reflect this property although the stability constants have been fo
empirically through the present computations.

3.2. Examination of Various Anisotropy Ratios and the Influence of Remeshing

In this section we present simulations with various anisotropy ratios. The parame
used for the simulations are summarized in Table Il. The core (sizef the particles’
regularization function is between 10 and 11 m and the width of the Gaussian(éggut
is about four times larger than the core size of one particle’s regularization funitign.
denotes the remeshing frequency (time steps per remeshindjiatice input of pollutant
mass. Note that in the following simulations remeshing is not really needed as the velo
field is constant. A second order cutoff functiéw(Eq. 20) was used for each case excep
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arror

i :
25 30 35 40 45 50
dt [days]

(@

0.5 1 1.5 2 25 3
dt [days]
(b)

FIG. 2. Error (1) of the numerical solution in comparison with the analytical solution while varying the size c
the time step. Numerical solutions were conducted with a second order cutoff function and a core siz&lofn.
(a) Case 1 (solid line, triangle); (b) case 3 (solid liremarks); and case 4 (solid line, circles).

for case 8 where we additionally used a fourth order cutoff function (Eq. 21). An overl:
ratio (2) of 0.9 was used for each test case.

3.2.1. Purely Advective Case

The breakthrough curves (Fig. 4) show a remarkable agreement between the nume
and the analytical calculations. The calculations were conducted without any dispers
(e = 0 andat = 0). The run took about 8 CPU sec with a particle number of 1800. Th
relative error at the observation point X(2525) between the exact and the numerical
simulation with a remeshing frequench{r,) of 1 per time step is zero at the beginning,
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error

5
0.2 0.4 0.6 08 1 1.2 1.4 1.6
dt [days]

FIG. 3. Error (I) of the numerical solution (with a core sizesof 11 m) in comparison with the analytical
solution while varying the size of the time step. Case 4 with a fourth order cutoff function (solidklingrks)
and with a sixth order cutoff function (solid line, circles).

fluctuates between 0.1 and 0.1% and increases up-t0.3% at the end of the simulation
(Fig. 5). That indicates that the concentrations at the tip and the tail of the plume
higher in the numerical case. This may be attributed to the numerical error introduced
remeshing. The relative error of the maximum concentration of the plume at time t (Fig.
increases slowly from 0 to 0.18%. The maximum concentration of the numerical simulat
is always lower than that of the exact solution. The relative errors of the simulations with
remeshing are in both cases constant and more than two to three orders of magnitude sr
than the errors occurring with a remeshing at every time step. The continuous transitio
the limity — 0, a1 — 0 is a remarkable feature of particle methods which cannot be
easily obtained by methods with a fixed grid.

3.2.2. Moderately Anisotropic Case
Figure 7 represents the temporal development of the plumes of both the numerical (
and the analytical (bottom) calculations at 200, 500, and 1000 days. The parameters

TABLE Il
Parameters Used for the Examination of Different Anisotropy Ratios

Uy Uy o or dt € Nrem Esrc Mi tmax

Case  [m/d]  [m/d] [m] [m] [ [m] [FI [m] [d] [d]

6a V2 -iV2 0 o 10 1 1 4 10 300
6b W2 -2 0 0 10 11 o 44 10 300
7a V2 -iy2 100 10 2 1 2 44 0 1000
7b V2 -iV2 100 10 2 11 o 44 10 1000

2
8 W2 -iV2 100 1 2 10 2 44 10 1000
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Time [d]
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FIG.4. Breakthrough curves of the numerical (circles) and analytical (solid line) solutions at point-x28%
without dispersion (case 6a witl.,, = 1). The instantaneous source is at poinl00/100) m.

for the simulation are shown in Table Il (case 7a with= 100 m andxr = 10 m). The
number of particles increased linearly with an average particle number of 25,000 an
maximum number of 50,000 (with a computational expense of 4 CPU min).

The breakthrough curves (Fig. 8) and the curves of the maximum concentrations (Fig
confirm the good agreement between the simulations and the analytical results. The rel:

relative error

0.01

0.008

0.006

0.004

0.002

-0.002

-0.004

-0.006

-0.008

-0.01
0

150
Time [d]

1
200

300

FIG.5. Relative error (Il) at point X(25—25), withey, = 0 m andet = 0 m, with a remeshing frequency of
1 (case 64, solid line, x-marks) and without remeshing (case 6b, solid line, circles).
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0.01 T T T T T

0.008

0.006

0.004|- 5 1

0.002

relative error
(=]

—0.004
—-0.006 - : : : 4

oo ; ; ‘ . :
0 50 100 150 200 250 300
Time [d]

FIG. 6. Relative error (Il) of the maximum concentration of the plume versus time t, ayite= 0 m and
ar = 0 m, with a remeshing frequency of 1 (case 6a, solid linenarks) and without remeshing (case 6b, solid
line, circles).

error at the observation point X(2820) is more significant at the tip of the plume. It
increases up to the time=4120 days) the maximum of the plume has moved across tt
observation point, and then decreases from about 0.5 to about 0.3%. The relative err
the maximum concentration increases up to 0.7% right at the beginning((days) and

200ays 500 days 1000 days.

L]
-

= Q)

e e cow  ew o 0 ww 1w T T R I % Taeo ow s 0 B0 e 5w
m m m

2000ays 500 days 1000 days

jo T ) 0 ww T Theo ew o sm R Thei  -mo om0 G0 o 5

0 0
m m m

FIG. 7. Comparison between the solutions of the numerical method Mith= 2 (top) and the analytical
solution (bottom) for case 7a with = 100 m andvy = 10 m at 200, 500, and 1000 days due to an instantaneou
injection at point £100/100). The contour lines represent the following concentratiea®©01, 0.01, 0.1, 0.5,
1.0, 2.0, 4.0, 6.0, and 8.0 [mg/l].
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FIG.8.

Breakthrough curves of the numerical (circles) and analytical (solid line) solutions at point-X2)

with ¢, = 100 m andxr = 10 m (case 7a). The instantaneous source is located at pdif9(100).

decreases evenly to less than 0.2% at the end of the simulation time. The error is thus r
significant at the earlier stage of the simulation.

In contrast to the simulations without dispersion (Section 3.2.1), the relative error
about the same here regardless of whether the simulations are conducted with a reme:
at every second time step (Fig. 10) or without any remeshing at all (Fig. 11). This signif
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FIG. 9.
line) solutions withyy = 100 m andx; = 10 m (case 7a).
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FIG. 10. Relative error () of the maximum concentration of the plume (solid line, triangles) and of conce
trations at point X(2p—20) (solid line,x-marks) versus time t, with, = 100 m andv; = 10 m and a remeshing
at every second time stepl¢, = 2), (case 7a).

that the error of the remeshing is much less significant than the error introduced by
approximation of the dispersion operator (Section 2.2.1).
3.2.3. Strongly Anisotropic Case

Finally, we consider simulations with high ratios of the longitudinal and transvers
dispersivities. Anisotropy ratios @f : ot of 100:1 to 1000: 1 are relevant for practical

relative error
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FIG. 11. Relative error () of the maximum concentration of the plume (solid line, triangles) and of cor
centrations at point X(20-20) (solid line, x-marks) versus time t, witey = 100 m andar = 10 m and no
remeshing, (case 7b).
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FIG.12. Comparison between the solution of the numerical method with a second order cutoff function (to
and with a fourth order cutoff function (middle), and the analytical solution (bottony),feae 100 m andxr = 1
m at 200, 500, and 1000 days due to an instantaneous injection at pdidd/(100) (case 8). The contour lines
represent the concentrations=0.01, 0.1, 0.5, 1.0, 2.0, 4.0, 6.0, and 8.0 [mg/I].

applications in groundwater studies and pose problems for finite difference, finite eleme
and characteristic methods. In Fig. 12 we present the contour plots of the numerical sil
lations of case 8« = 100 m,at = 1 m). The simulation was performed with an average
number of 17,000 particles and a maximum number of 30,000 (with a computational c
of 3 CPU min). Comparing the results of the numerical simulations with a second orc
cutoff function with the exact solution (top and bottom row in Fig. 12), one may obsen
oscillations in the transversal direction and a broadening of the tip and the tail of the plu
in the numerical simulations. Unlike other cases, here negative concentration values u
almost 1% of the maximum concentration were generated. The numerical simulations v
a fourth order cutoff function (Fig. 12, middle row), however, do not show these numeric
instabilities and the contour plots match the exact ones well. Negative concentration va
never exceeded 0.0003% of the maximum concentration. Figures 13 and 14 verify the
markable agreement between the numerical calculations with a fourth order cutoff funct
and the exact calculations. The numerical simulations with a second order cutoff funct
show lower concentrations at both the observation point X£ZD) and the maximum

concentration at time t. In the case of numerical simulations with a second order cu
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FIG. 13. Breakthrough curves of the numerical solution (with a second and a fourth order cutoff functio
and the analytical solution at point X(2620) withe, = 100 m andxy = 1 m (case 8). The instantaneous source
is located at point{100/100). Analytical solution (solid line), and numerical solution with a second order cutof
function (dashed line, stars) and with a fourth order cutoff function (circles).
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FIG. 14. Maximum concentration of the plume at time t of the numerical solution (with a second and four
order cutoff function) and the analytical solution with = 100 m andxr = 1 m (case 8). Analytical solution

(solid line), and numerical solution with a second order cutoff function (dashed line, stars) and a fourth or
cutoff function (circles).
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trations at point X(20—20) (solid line, stars) versus time t, with = 100 m andx;y = 1 m and a second order

cutoff function (case 8).

function the relative error of concentrations at the observation pointX{20) and in the
maximum increases up to 9%, respectively 7%-at000 days (Fig. 15). Simulations with
a fourth order cutoff function show an almost constant error of 0.25% at the observat
point and 0.35% at the point of maximum concentration (Fig. 16). The most significe
discrepancy is observed at the tip of the plume resp. at the earlier stage of the simula
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FIG. 16. Relative error (Il) of the maximum concentration of the plume (solid line, triangles) and of concel
trations at point X(2p—20) (solid line, stars) versus time t, with = 100 m andx; = 1 m and a fourth order

cutoff function (case 8).
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Taking a higher than fourth order cutoff function (e.g., sixth order) does not further char
the results qualitatively (see Section 3.4). Since we saw in Section 3.2.2 that good res
with a second order cutoff function could be obtained for an anisotropy ratio of 10: 1, t
numerical difficulties here derive from the high anisotropy ratio of 100: 1.

3.3. Comparison with a Finite Difference Model

In order to compare the results of our method with another numerical method, case 8
been modelled with '"MT3DMS,’ a public domain finite difference simulation code [24]
The advection term is discretized with explicit upstream finite differences. The model a
is 2000x 2000 m with a cell size of 1& 10 m and a source dimension of 5®0 m.

A time step of 1 day was chosen. Note that the time stepping method (explicit) and

discretization in space and tinfex, At are comparable to those in case 8. However, sinc
the initial conditions are different in this FD model (input of a source with a rectangul
shape), the results of the two methods can only be compared qualitatively. Figure 17 pres
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FIG. 17. Contour plots performed with ‘MT3DMS’ (top) and the particle code (bottom), at 200 days witl
o =100 m andwvr = 1 m. The flow field is diagonal to the x-axis (left) and parallel to the x-axis (right). The
model domain is 2000 nx 2000 m. The contour lines represent the concentraticadd1, 0.1, 0.5, 1.0, 2.0,
4.0, 6.0, and 8.0 [mg/I].
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the results after 200 days with a flow direction diagonal (left) and parallel (right) to the x-a
for both the finite difference and the particle method. By comparing the results obtained v
the finite difference method one may observe in the left half of the figure (with a diagor
flow direction) a broadening of the plume in the transversal direction and also a shorter
of the plume in the longitudinal direction. In addition one can also observe numeric
oscillations in the transversal direction. The so-called angular—numerical dispersion (g
anisotropy) is well known in FD models and stems from the fact that the true direction
the pulse cannot be represented on the discrete grid, as mass transport is only approxir
between direct neighbour cells [20]. If the grid is not aligned with the flow direction, it
anisotropy interferes with the anisotropy of the dispersion tensor. In [11] it is shown that
dispersive part of the operator already causes spurious widening of a plume or cloud, w|
is especially disturbing for slender plumes. One might argue that in the test case used
the transformation to an isotropic case and to a grid that is aligned with the flow directior
possible since the flow is parallel. But in general, flows are nonuniform and streamlines
curved due to wells, recharge, and discharge points; a FD grid—contrary to our metho
cannot be aligned with the flow in all places simultaneously nor does a transformat
exist that makes the problem isotropic. The results obtained with the particle method v
a second order cutoff function indicate numerical instabilities in both cases—uwith a flc
direction diagonal to the x-axis and parallel to the x-axis. Note that we use here a sec
order cutoff function for comparison reasons with the FD code. The numerical instabiliti
disappear when using a fourth or higher order cutoff function (see Section 3.2.3).

The simulations with the FD model show numerical dispersion and oscillations only
the case in which the flow direction is not aligned with a coordinate axis, while our meth
yields results which are independent of the flow direction.

Finally, we examined the diagonal case shown in Fig. 17 with both methods (finite diffe
ence and particle method) by varying the number of gridpoints and particles, respectiv
The cell sizeAx, Ay and the interparticle spacing are 10, 20, and 50 m, respective
The simulations with the particle code are performed with a second order cutoff fur
tion. The relative errors of the maximum concentration are depicted in Fig. 18. With bc
methods the error decreases with the number of gridpoints or particles. With the part
code many fewer particles than gridpoints are needed to obtain the same accuracy.
reason is that for the particle code, particles are only needed at locations of the pollu
plume, whereas in finite differences the entire domain has to be discretized consiste
The elapsed CPU time is shown in Fig. 19. For the simulations performed with a cell s
or interparticle spacing of 20 and 50 m, both methods needed about the same CPU t
In the case with the highest accuracy, the particle code is about 10 times faster than the
code.

3.4. Examination of Cutoff Functions of Different Order

Figure 20 shows the accuracy of the second, fourth, and sixth order cutoff functio
examining test cases 7a and 8 at 200 days. The error () of case 8 (with a high anisotropy
ratio of 100: 1) is more than two orders of magnitude smaller with a fourth or sixth ord
cutoff function than with a second order cutoff function. The accuracy of the results of ce
7a (with an anisotropy ratio of 10: 1), however, does not change significantly with the or¢
of the cutoff function. The drawback of the use of a higher order cutoff function is the mo
restrictive time step constraint (see Section 3.1.2).
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FIG. 18. Relative error (Il) of the maximum concentration at 200 days versus the number of gridpoints a
particles, respectively. The squares represent the results conducted with the FD code; the triangles represe
results conducted with the particle code. The flow field is diagonal,ayite: 100 m andx; = 1 m (see Fig. 17).
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FIG.19. Elapsed CPU time inseconds versus number of gridpoints (FD code, squares) and number of part
(particle code, triangles).
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order of cutoff function

FIG.20. Error (1) of the numerical solution (case 7a and case 8-®0 days in comparison to the analytical
solution and to varying orders of the cutoff function (second, fourth, and sixth order cutoff function). Case 7aw
ap = 100 m andxy = 10 m (squares); case 8 with = 100 m andvy = 1 m (triangles).

4. NUMERICAL RESULTS WITH A NONCONSTANT VELOCITY FIELD

In this section we present the results of simulations with a nonconstant velocity fie
a case where no analytical solutions with which to compare exist. For this purpose
code was extended to deal with a spatially variable velocity field. The velocity field wi
implemented by the analytical expression of a velocity field which is the superposition ¢
constant flow field with the flow field induced by pointlike sources (infiltration wells) an
sinks (pumping wells),

1 i
V(X)=V°+ZZn|x?yi|’ (30)

wherev, describes the constant flow fiel@; is the pumping rate of well y; is the location

of the i-th well, andv(x) is the value of the (combined) velocity field at painfThe aquifer

is assumed to extend to infinity. Note that the nonconstant velocity field implies a spatiz
varying dispersion tensor (see Section 2.2.2).

We consider one infiltration well located a0 m, y=0 m and two pumping wells
located at x= —50 m, y=0 m and x=—-20 m, y=—60 m, respectively, embedded in
a constant flow field withu, =0.2 [m/day] and y=—0.2 [m/day]. The flow rate of the
infiltration well is Q= 30 [m?/day] and that of the pumping wells©— 20 [m?/day]. This
type of flow field appears in applications of hydraulic remediation measures where
natural flow is modified to direct a plume, or remove a plume, or prevent a plume frc
reaching a downstream water pumping well. In the example, the plume originates fror
permanent source of pollutant mass located-at-20 m, y=40 m. The simulation was
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FIG. 21. Velocity field visualized as velocity vectors (left) and streamlines (right).

performed with an average particle number of 14,000 and a maximum number of 28,(
and it took about 8 CPU min.

The velocity field visualized by velocity vectors as well as streamlines is depicted
Fig. 21. Particles which enter a sink are discharged. Figure 22 shows the temporal de
opment of the plume with a remeshing frequency of 5. It moves along the streamlines
the sharp fronts can be well simulated. For comparison reasons, Fig. 23 shows the re
of simulations conducted with a remeshing frequency of 40. Since the velocity field is |
constant anymore, simulations with too large a remeshing interval lead to unstable res

100 days 200 days 400 days
23 50 0
0 0 9
50 50, -50)
-100 100 : B —100
150 1501 150
-50 [ 50 100 150 50 0 50 100 150 50 [ 50 100 180
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50 50| sob
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FIG.22. Temporal development of a permanentinjection at poirt 2q/40) with a remeshing frequency of 5
at 100, 200, 400, 600, 800, and 1000 days. The area ix3@ m. The contour lines represent the concentrations
¢ =100, 200, 300, 400, 500, 600, 700, 800, and 900 [mg/I].
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FIG. 23. Temporal development of a permanent injection at point 2q/40) with a remeshing frequency of
40 at 200, 400, and 600 days. The contour lines represent the concentratiah@0¢ 200, 300, 400, 500, 600,
700, and 800 [mg/l].

Locally, particles cease to overlap, thus violating the convergence criterion requiring t
particles must overlap at all times (Section 2.3).

5. CONCLUSIONS

A Lagrangian scheme has been presented for the two-dimensional simulation of pas
pollutant transport in a porous medium. The anisotropic extension of the particle stren
exchange scheme has been implemented to describe the diffusive—dispersive proce
validation study has been conducted in which the effect of the time step size, the core
of the regularization function of the particles, and various forms of the dispersion ten:
have been studied. Furthermore, various cutoff functions, anisotropy ratios, and remes
frequencies have been examined. We have compared the numerical results with the anal
solution of a Gaussian shaped pollutant injection into a constant external velocity field.

In summary, the benchmarks prove the presented numerical method to be accurate
stable eveninthe limiting cases of vanishing diffusion—dispersion and high anisotropy rat
both of which are of great practical relevance in groundwater applications. The simulat
of a permanent pollutant injection into a more complex flow topology with sources al
sinks added to the constant flow field shows that the method is very capable of dealing \
spatially variable diffusion—dispersion tensors.

From the test cases in the validation study we find the following results. The meth
shows no grid-induced anisotropy. Very good results are obtained for the purely advec
(¢ = 0, a1 = 0) and the moderately anisotropig (: o1 = 10: 1) cases. Simulations with
a high anisotropy ratioof_ : o1 =100: 1) require the use of a higher than second orde
cutoff function (fourth or sixth order) to obtain good results. Using a fourth or a sixth ord
cutoff function increases the accuracy significantly only in the strongly anisotropic case.
drawback of the use of a higher order cutoff function is, however, the more restrictive tir
step constraint. The errors introduced by occasionally remeshing the particles’ locations
less significant than the errors introduced by the approximation of the differential diffusio
dispersion operator by an integral operator.

The results of the simulations using the PSE scheme with the anisotropic extens
demonstrate that PSE can accurately handle even high anisotropy ratios. In the cor
of groundwater pollution transport modelling the presented method proves to be a v
accurate and interesting alternative to other particle methods such as random walk ol
method of characteristics.
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